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Abstract: We establish the reasons for the existence of multi-objective and scalar objective optimization for the second order case 
with a suitable example. We know that Guignard’s constraint qualification (GCQ) are the weakest assumption guaranteeing that 
the necessary conditions of the Karush-Kuhn-Tucker (KKT) type hold in single objective optimization problem nonetheless it is also 
true for second order single objective optimization. However, GCQ is not used for both first and second order multi-objective 
cases, and in this paper, we present the appropriate reasons behind it with an example. 
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——————————      —————————— 

1. Introduction 
Investigation of multi-objective optimality conditions has 

been one of the most recent topics in the theory of 

optimization problems. Many authors gave first order 

optimality conditions of vector objective optimization by 

using several constraint qualifications [5, 6] and also 

presented the gap between single and multi-objective 

optimization for the first order case [2, 9]. Unpredictably, not 

many papers have been devoted to study second order 

optimality criteria. According to [4], the first paper 

concerning second order necessary conditions for multi-

objective problems with a set constraint appeared in [3] and 

then [7]. Relying on [1,3,8] we have demonstrated the 

reasons for the existence of multi-objective and scalar 

objective optimization for the second order case by a suitable 

example.  

2. Preliminaries 

2.1 Basic notions 
We consider the following multi objective optimization 

problem 1P : 

 ( )xfmin , subject to the set X: 

    ( ) ( ){ }0 ,0  EX n =<∈=∈ xhxgxx   

Let, ln EE: →f , mn EE: →g  and kn EE: →h  be twice 

continuously differentiable vector-valued functions. Assume 

that ( ) ( ){ }0: == xx jgjI  for j=1,…,m.   

For any twice continuously differentiable function 

mn EE: →g  and for any vector mE∈d , we denote by 

( )xg∇  and ( )( )ddxg ,2∇  respectively the nm×  Jacobian 

matrix and the m-dimensional vector whose ith component is 

( )dxd i
T g2∇ . 

In this paper we use the following notions: 

For any two vectors ( )Txx 21,=x  and ( )Tyy 21 ,=y   

in 2E , we use the following conventions: 

yx
lex

<  means that 11 yx <  holds or 11 yx =  and 22 yx <  

hold. 

yx lex< means that  11 yx <  holds or 11 yx =  and 

22 yx <  hold. 

The subscript lex means lexicographic order. 

        The following well-known second order approximation 

of a set provides the satisfactory tool, which is the 

modification of the first order contingent cone. For detail [4]. 

Definition 2.1 The second order contingent set to X at 

clX∈x  in the direction nE∈d is the set defined by 

( ) ( )d;xX;convTcl, 2∈zd  (Second order Guignard’s  
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                        ( ) ( ) ( )






 +++=+→∃∈∃∈≡  

2
1such that  0  ,XE,d;xX;T 222

nnnnn tttt οzdxxxzd nn

where ( ) 2
ntο  is a vector satisfying ( )

0 
t 2

n

2

→
ntο . 

In general the second order contingent is not a cone and it 

does not preserve convexity and also ( )d;xX;T2  is empty 

whenever ( )xX,T∉d  but the converse does not hold. [4, 8].  

A first order sufficient condition for vector minimum point is 

that the following system has no nonzero solution d. 

( ) 0 <∇ dxf T , ( ) 0  <∇ dxIg , ( ) 0=∇ dxh                  2.1 

The Kuhn-Tucker type condition for optimality is equivalent 

to the inconsistency of the following system: 

( ) 0 <∇ dxf T , ( ) 0 <∇ dxg T
I , ( ) 0=∇ dxh T             2.2 

The gap between (2.1) and (2.2) is caused by the following 

directions: 

( ) 0 <∇ dxf T , ( ) 0=∇ dx T
if  at least one i, 

( ) 0  <∇ dxg T
I , ( ) 0=∇ dxh T                                       2.3 

A direction d that satisfies (1.3) is called a critical direction. 

For the sake of simplicity, we use the following notations: 

( ) ( ) ( ) ( )( )( )Ti
T

i
T

ii fffF ddxzxdxzd, 2 , , ∇+∇∇=  

( ) ( ) ( ) ( )( )( )Tj
TT

jj ggG ddxzxdxzd, 2 ,g , j ∇+∇∇=  

( ) ( ) ( ) ( )( )( )Tp
TT

pp hhhH ddxzxdxzd, 2 , , p ∇+∇∇=    

2.2 Second order necessary conditions 

Now, consider a problem 2P :  

( )xfmin , subject to the set X∈x . 

Lemma 2.1 If X∈x  is an efficient solution of 2P  then for 

any direction ( ) ( ){ }0xX;T =∇∩∈ dxd T
if  the system 

( ) 0lexiF <zd, , i∀                                                         2.4 

has no solution ( ) ( )d;xX;T, 2∈zd .   

i.e. ( ) ( ) φ=∩ d;xX;T 2zd,iF         

Proof can be seen in [3, 4] 

In the single objective case, that is, 1=l , the Lemma 2.1 

holds at the optimal point considering any direction   

constraint qualification (GCQ)). This is no longer true in 

the multi objective case, as the following example shows. 

Example 2.1. Consider the problem  

min






 −−− 2

12
2
12 x x,x

2
1x and  ( ){ }4

1
2
2

4
121 4x x  x2 x,xX <<=  

It is easily verified that: 

i) ( )0,0x 0 =  is an efficient solution to the problem. 

    ii) Choose ( ) ( )xX,T0,1 ∈=d  where ( ) 0=∇ dx T
if  i∀  

and ( ) ( ){ }4 z 22z,zd;xX;T 221
2 <<= . 

     iii) ( ) 0lexiF <zd, , 

( ) ( ) ( )( ) 0, and  0 <∇+∇=∇⇒ ddxzxdx 2
i

T
i

T
i fff , i∀  

( ) ( ) 011 <∇+∇⇒ dxdzx 2T ff T  and   

                                             ( ) ( ) 022 <∇+∇ dxdzx 2T ff T  

( ) ( ) 0
0
1

00
01

0,1
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z
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−⇒   i.e. 1z2 −>  

And  

( ) ( ) 0
0
1

00
02

0,1
z
z

1,0 T

2

1T <
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 , i.e. 2z2 <  

i.e. ( ) ( ){ } 02z1z,z 221 lexiF <<<−=zd,  

      iv) ( ) ( ) φ=∩ d;xX;T 2zd,iF  

       v) But ( ) ( ){ }4zz,zd;xX;convTcl 221
2 ≤=         

      vi) So, ( ) ( ) φ≠∩ d;xX;convTcl 2zd,iF  

  

 

 

 

 

      

                                                  Fig. 1 
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REMARK 2.1 : In the above example the only challenge 

is to compute the contingent set; the hint is: suppose a 

direction w is in the contingent set and write down that the 

moving point (given from the direction) satisfies the 

constraints; take the limit in these expressions and reader 

get necessary condition for w to be in the contingent set. 

Finally, test the sufficiency of these conditions, just 

showing concrete sequences of 𝑡𝑛  and 𝑤𝑛  for a generic 

direction w which satisfies them.  

 

 

 

 

 

 

  

 

                                             Fig. 2 

                                     

3. CONCLUSION  

In Lemma 2.1 we see that relation (2.1) holds for any 

objective function, but if we replace the second order 

contingent cone by ( ) ( )d;xX;convTcl, 2∈zd  then the 

lemma does not hold. However, convexlikeness of the 

objective function guarantees that (2.1) is held at the 

considered optimal point for all the directions in the closed 

convex hull of the second order contingent set. 
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